SAYAN GHOSAL

PROFESSIONAL SUMMARY

- Computational scientist with a passion for integrating complex statistical models with genomic knowledge to provide insight into disease mechanisms.
- Contributions include novel Bayesian and machine learning models providing mechanistic insights into complex disorders like Alzheimer's, Autism, and Schizophrenia.
- Highly collaborative and motivated to drive new research endeavors in the intersection of methods development and biological discovery.

ACADEMIC BACKGROUND

Johns Hopkins University, Baltimore, USA Ph.D., Electrical and Computer Engineering M.S., Applied Mathematics and Statistics	2023 2021
Jadavpur University, Kolkata, INDIA B.E., Electronics and Telecommunication Engineering	2017
Professional Background	
Computational Scientist, Broad Institute , Cambridge Contributions: SV Discovery, Grpah Based Sequence Alignments, Disease Association	Present
AI Resident, Google X, Mountain View Contributions: Genetics, LLM, Mixed Effect Modelling, Time Series Analysis, HPC	
ML Intern, Siemens Healthineers , Princeton Contributions: Graph Neural Networks, Contrastive Learning, Interpretability	2021

Skills

Statistical Genetics	GWAS, Structural Variant Discovery, Mixed Linear Modeling, PRS Analy-
	sis, Finemapping
Satistical Modeling	Bayesian Variational Models for Summary Statistics, Latent Factor Model-
	ing, Dictionary Learning
ML for Genomics	Convolutional Networks for Genotype Data, Pathway Analysis Using Graph
	Networks
Deep Learning	Contrastive Learning on Graphs, Transfer Learning, Transformers, Autoen-
	coders, Graph Neural Networks
Model Iterpretibility	Motif Discovery, Bayesian Feature Selection, Attention Mechanisms,
1 0	LASSO, Group-LASSO
Pipeline Development	
I ipenne Development	Genomic QO, Data Cleaning, Denominarking

Present

Relevant experience

Broad Institute, Cambridge Computational Scientist

Motif Driven Structural Variant Discovery

- Identifying structural variants from the graph representation of sequence alignments.
- Finding novel motifs for complex genomic rearrangements.

Johns Hopkins University, Baltimore

Research Assistant, Electrical and Computer Engineering

BEATRICE: Bayesian Fine-mapping from Summary Data using Deep Variational Inference

- Developed a deep Bayes variational approach to parse complex heritability resulting in 2.2 fold increase in power and coverage.
- Utilized machine learning with Bayesian inference to handle multiple causal variants and infinitesimal effects from non-causal variants.

A Biologically Interpretable and Non-linear Approach to Generate Polygenic Risk Scores

- Consolidated genetic risk along biological pathways to generate risk scores predictive of disorder.
- Embedded gene ontology in a graph to infer underlying processes and functions linked to disease ٠ risk prediction.

A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Pathways and Neuroimaging Markers of Disease

- Developed a novel geometric deep learning tool for whole-brain whole-genome analysis of schizophrenia.
- Collaborated with cross-functional teams of biologists, data scientists, and clinicians, which led to • a future million-dollar grant, scholarships², awards¹, and two publications.

Multimodal Imaging Genetics Models for Biomarker Identification and Schizophrenia Risk Prediction

- Developed novel latent factor models utilizing autoencoder and dictionary learning to identify correlated brain and genetic networks from brain imaging and genetics study of schizophrenia.
- Received special mention in the Hopkins magazine and a best paper award³ at SPIE. ٠

SUPERVISING ACTIVITY

Johns Hopkins University, Baltimore

2021-2023

Supervisor

- Advising a computer science graduate student on deep learning projects aimed to learn the longitudinal effect of genetic variations on morphological changes in brain regions of 1K Alzheimer's patients.
- Authored a senior author paper at the International Conference of the IEEE Engineering in Medicine and Biology Society.

HONORS AND AWARDS

¹ Organization for Human Brain Mapping awarded \$700 for noteworthy abstracts.	2023
² MINDS fellowship awarded $30K$ for spring tuition.	2022
³ Best Paper Award, SPIE Medical Imaging (Image Processing Conference)	2021
4 MICCAI travel award of \$500.	2020
⁵ Dept. of Electrical and Computer Engineering, JHU, PhD fellowship	2017 - 2018
⁶ Mitacs Globalink Research Fellowship Award	2016

PATENTS

Ghosal, S., Jacob, A. J., Sharma, P., & Gulsun, M. A. (2023). Subpopulation Based Patient Risk Prediction Using Graph Attention Networks. US Patent App. 17/647,613.

PUBLICATIONS

S. Ghosal, et al., BEATRICE: Bayesian Fine-mapping from Summary Data using Deep Variational Inference.(Submitted in **PLOS Genetics**). biorXiv

S. Wu, A. Venkataraman, S. Ghosal. GIRUS-net: A Multimodal Deep Learning Model Identifying Imaging and Genetic Biomarkers Linked to Alzheimer's Disease Severity. Accepted in EMBC, 2023.

S. Ghosal, et al. A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Pathways and Neuroimaging Markers of Disease. ICLR: International Conference on Learning Representations, 2022 (Accepted). biorXiv

S. Ghosal, et al. A Generative Discriminative Framework that Integrates Imaging, Genetic, and Diagnosis into Coupled Low Dimensional Space. NeuroImage: 238:118200, 2021

S. Ghosal, et al. G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for Biomarker Identification and Disease Classification. Proc. **SPIE**, Medical Imaging 2021: Image Processing. arXiv:2101.11656

Selected for Special Oral Presentation ($<\!\!15\%$ of Papers), and received best student paper award

S. Ghosal, et al. Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-dimensional Framework. MICCAI: Medical Image Computing and Computer Assisted Intervention, 2019. Selected for Early Acceptance (Top 18% of Submissions)

S. Ghosal, et al. A generative-predictive framework to capture altered brain activity in fMRI and its association with genetic risk: application to Schizophrenia. Proc. **SPIE** 10949, Medical Imaging 2019: Image Processing.

S. Ghosal, Nilanjan Ray. Deep deformable registration: Enhancing accuracy by fully convolutional neural net. Pattern Recognition Letters.

S. Ghosal, et al. A novel non-rigid registration algorithm for zebrafish larval images. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017.

INVITED SEMINARS AND TALKS

Title: Benefits of Deep Learning to Parse Complex Genetic Architectures	s to Provide
Mechanistic Insights	
MIT (Host: Manolis Kellis)	2023
Title: Deep Imaging Genetics to Parse Neuropsychiatric Disorders	
Regeneron (Host: Yu Bai)	2023
Google-Genomics, Google Health (Host: Farhad Hormozdiari)	2022
Title: Biologically Inspired Regularization Models Integrating Multimodal D Neuropsychiatric Disorders.	ata to Parse)

ECE Seminar Series (Host: Archana Venkataraman) 2022