

A NOVEL NON-RIGID REGISTRATION ALGORITHM FOR ZEBRAFISH LARVAL IMAGES

Sayan Ghosal¹, Soumava Banerjee¹, Natascia Tiso², Enrico Grisan³, Ananda S. Chowdhury¹

¹Department of Electronics & Telecom. Engg. Jadavpur University Calcutta -700032, India.

²Department of Biology, University of Padova Italy.

³Department of Information Engineering, University of Padova Italy.

<u>OVERVIEW</u>

- > INTRODUCTION
- > METHODS
 - Coarse Affine Registration
 - Minimum Weight Bipartite Graph Matching
 - Diffeomorphic Demons Method
- > EXPERIMENTAL RESULTS
- > CONCLUSION & FUTURE SCOPE

BACKGROUND

- Precise mapping of gene expression profiles, neuronal types and connections during vertebrate brain development
- Zebrafish (Danio rerio) as evolved as an ideal model organism for bio-imaging approaches in vertebrates
- ➤ ViBE-Z fails to achieve accurate registration due to false landmark detection in low resolution image and local under/over exposed image of the larvae

PROPOSED METHODOLOGY

- > Coarse affine registration using the LBFGS algorithm is applied first on the moving dataset
- The coarsely registered moving image and the reference image are divided into a union of overlapping patches
- Minimum weight bipartite graph matching algorithm is employed to find the correspondence between the two sets of patches
- > The corresponding patches are then registered using the diffeomorphic demons method with proper intra-patch regularization
- Inter-patch regularization is imposed through a composite transformation obtained from the adjacent transformation fields

Coarse Registration

- \triangleright M_p(x, y, z) denotes the pth voxel in the moving image M and F_p(x, y, z) be the pth voxel in the fixed image
- The affine transformation on $M_p(x, y, z)$ yields $M'_p(x', y', z')$ therefore, $M'_p(x', y', z') = T(M_p(x, y, z))$
- The L-BFGS algorithm is applied to optimize the cost function $\sum_p \|I(F_p) I(M_p')\|^2$ to obtain the affine transformation parameters

Patch Correspondence using Minimum Weight Bipartite Matching

- ➤ The coarsely registered moving image M' and the fixed image F are divided into n overlapping volumetric patches
- ➤ A bipartite graph is represented by G = (V1 U V2, E) with two disjoint vertex sets V1 and V2 and the edge set E (edges exist only across the vertex sets)
- ➤ The centroids of the coarsely registered moving image patches M'_{1c}, M'_{2c}... M'_{nc} and that of the fixed image patches F_{1c}, F_{2c}, ... F_{nc} constitute the two disjoint vertex sets. For the present problem, |V1| = |V2| = n
- Mean of the differences in the intensity values of the constituent pixels in two patches is assigned as the weight of the edge between the respective patch centroids.
- The weight of the edges is given by W(M'_i, F_i),

W(M'_i, F_j) =
$$\frac{\sum_{p} |I(F_{jp}) - I(M'_{ip})|^2}{n}$$

The Kuhn-Munkres algorithm is applied to solve the minimum weight bipartite matching problem. This algorithm yields an optimal match set $\Gamma(M'_i, F_{m(i)})$, i = 1, 2...n

Patch Registration using Diffeomorghic Demons

> The corresponding patches are registered using diffeomorphic demons minimizing the following energy function.

$$E(T'_{i}) = \frac{Sim(I(F_{(mi)}, I(T'_{i}(M'_{i})))}{\alpha_{1}^{2}} + \frac{Reg(T'_{i})}{\alpha_{2}^{2}}$$

➤ The Similarity function is given by:

$$Sim(I(F_{(mi)},I(T'_{i}(M'_{i}))) = \frac{\|I(F_{m(i)} - I(T'_{i}(M'_{i}))\|^{2}}{2}$$

➤ The Regularization term is given by:

$$Reg(T'_i) = \|\nabla(T'_i)\|^2$$

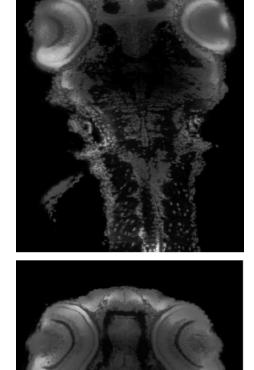
Inter-Patch Regularization

- ➤ Inter-Patch Regularization ensures the smoothness and the continuity of the transformation field across the patch boundaries
- The inter-patch regularization is achieved by composite transformation which is a distance weighted average of the two transformation fields under consideration
- The composite transformation of two adjacent patches M"_i (resulting from demons transformation on patch M'_i) and M"_j (resulting from demons transformation on patch M'_j) for their corresponding nonrigid transformation T'_i and T'_j is given by:

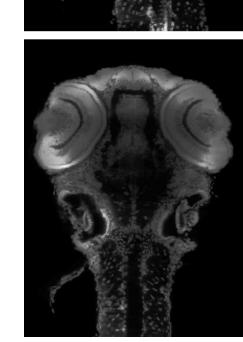
$$T'_{p} = \frac{\frac{1}{d''_{ip}} * T'_{ip} + \frac{1}{d''_{jp}} * T'_{jp}}{\frac{1}{d''_{ip}} + \frac{1}{d''_{jp}}}$$

 $d_{ip}^{\prime\prime}=$ The distance of the pth pixel from the centroid of the patch $M_{i}^{\prime\prime}$

 $d_{ip}^{"}$ = The distance of the pth pixel from the centroid of the patch $M_{i}^{"}$


EXPERIMENTAL RESULTS

- Experimented with four multi-view confocal 3D datasets of 72 hpf zebrafish larvae generated using standard protocols for ViBE-Z sample preparation
- ➤ The reference image and the floating image are divided into 125 volumetric patches with dimensions 200 X 140 X 140 having an overlap of 50 pixels on each side
- Registration performance is measured using Structural SIMilarity index (SSIM) and Peak Signal to Noise Ratio (PSNR). SSIM can capture local variations between two images whereas PSNR can capture global differences
- We have compared our result with that of VibeZ and we have also done a internal comparison by replacing bipartite graph matching with a greedy approach and by removing inter patch regularization


ACCURACY OF DIFFERENT ALGORITHMS

Comparison of performance with VibeZ

SSIM-Ours	SSIM-VibeZ	PSNR-Ours	PSNR-Vibez
0.7489	0.7418	20.0175	19.9382
0.7330	0.6315	22.7760	19.7279
0.7554	0.7388	21.7560	21.3490
0.7534	0.7427	19.0902	18.9961

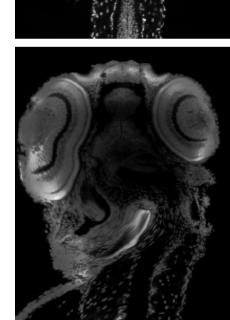
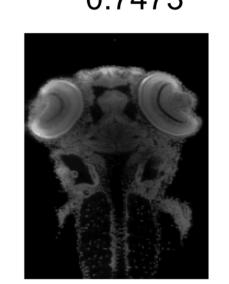
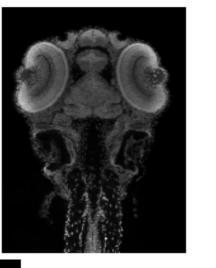
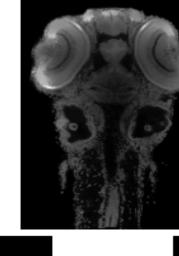


Fig. 1. Top Left: Moving Image, Top Right: Fixed Image, Bottom Left: Registration using our method, Bottom Right: Registration using VibeZ. All implementations are done in 3D and all results are shown for the same 2D slice of dataset 2.


> Internal Comparisons:


- Greedy Correspondence(GC):


SSIM-Ours	SSIM-GC	PSNR-Ours	PSNR-GC
0.7489	0.6894	20.0175	19.1551
0.7330	0.6894	22.7760	21.6930
0.7554	0.71	21.7560	21.037
0.7534	0.6897	19.0902	18.883

- No Inter Patch Regularization(NIPR):

nanzanom my.						
SSIM-Ours	SSIM-NIPR	PSNR-Ours	PSNR-NIPF			
0.7489	0.6894	20.0175	19.6899			
0.7330	0.7277	22.7760	22.446			
0.7554	0.7531	21.7560	21.6386			
0.7534	0.7473	19.0902	19.0206			

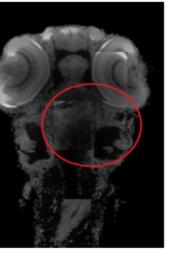


Fig2: First Row: Moving Image (left), Fixed Image (right); Second Row: Registration using our method; Third Row: Registration using our method without bipartite matching (left), Registration using our method without inter-patch regularization (right). Red circles indicate distortions. All implementations are done in 3D and all results are shown for the same 2D slice of dataset 3.

Conclusion And Future Work

- > A novel non-rigid registration algorithm for zebrafish larval images yielding better accuracy
- > In future, we plan to embed geometric information in the solution pipeline