Sayan Ghosal

Contact
Information

3400 N Charles St, Baltimore, MD 21218 (443) 531-5268 sghosal3@jhu.edu Linkedin | Website

Professional Summary

- Data science researcher with 5+ years of experience in high dimensional data analysis which involves building data modality agnostic robust and interpretable models for biomedical and genetic data analysis.
- Developed and built a collaborative network with scientists across the globe, and engaged in multiple collaborative projects which led to 7 publications in peer reviewed conferences and journals.
- Passionate about finding the genetic foundation of risk propagation mechanisms in different neuropsychiatric diseases through data-driven learning and inference on imaging-genetics datasets.

EDUCATION

Department of Electrical And Computer Engineering, Johns Hopkins University, Ph.D., Spring 2023 (expected)

• Advisor: Prof. Archana Venkataraman

Department of Applied Mathematics And Statistics, Johns Hopkins University, M.S.E., Spring 2021

• GPA: 4.0/4.0

Department of Electronics and Telecommunication Engineering, Jadavpur University, B.E., 2017

- Honors Thesis: A novel non-rigid registration method for zebrafish larval images
- Advisor: Prof. Ananda Shankar Chowdhury
- CGPA: 9.3/10.0

RESEARCH INTERESTS

Diagnostic Modeling, Multiview Learning, Machine Learning, Graph Learning, Deep Learning, Imaging Genetics, Genomic Association Study

RESEARCH SKILLS

- Predictive modeling.
- Designing robust optimization algorithms.
- Building data modality agnostic transferable and generalizable models.
- Graph representation

- Genetic association analysis.
- Interpretable Deep Learning.
- Incorporating hierarchical structures in deeplearning models.
- Developing interpretable biomarker detection techniques.

RESEARCH EXPERIENCE

Johns Hopkins University

Graduate Research Assistant

2017 -

Advisor: Prof. Archana Venkataraman, Department of Electrical and Computer Engineering

- GUIDE: A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Propagations and Imaging Biomarkers of Disease
 - Developed a novel deep neural network for whole-brain and whole-genome analysis.

- Tracks the flow of genetic risk through the biological pathways using hierarchical graph convolution and attention operations.
- Fused the imaging and genetic embedding for disease classification.
- Implemented a Bayesian feature selection strategy to extract the discriminative biomarkers of each modality.
- G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for Biomarker Identification and Disease Classification
 - Developed a novel deep neural network to integrate high dimensional multimodal data like brain imaging and genetics data.
 - Performed a classification task, while handling missing data.
 - Identified and ranked features using an interpretable network.
- Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-Dimensional Framework
 - Designed a novel generative-discriminative model for disease classification and feature selection.
 - Developed an ADMM based robust optimization strategy that enhances the reproducibility of the model.
 - Incorporated biological structures by using the interconnectedness information of different features.

University of Alberta, Canada

Research Assistant 2016

Advisor: Prof. Nilanjan Ray, Department of Computing Science Science.

- Deep Deformable Image Registration
 - Implemented a deep deformable registration algorithm for MRI images.
 - Improved the non-convex optimization of diffeomorphic demons by introducing Fully Convolutional Neural Networks (FCNN).

PUBLICATIONS

- **S. Ghosal**, et al., "A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Pathways and Neuroimaging Markers of Disease".biorXiv Submitted in ICLR 2022
- **S. Ghosal**, et al., "A Generative Discriminative Framework that Integrates Imaging, Genetic, and Diagnosis into Coupled Low Dimensional Space". NeuroImage: 238:118200, 2021
- **S. Ghosal**, et al., "G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for Biomarker Identification and Disease Classification", Proc. SPIE, Medical Imaging 2021: Image Processing. arXiv:2101.11656

Selected for Special Oral Presentation (<15% of Papers), and received best student paper award

- S. Ghosal, et al., "Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-dimensional Framework", in MICCAI: Medical Image Computing and Computer Assisted Intervention, 2019. Selected for Early Acceptance (Top 18% of Submissions)
- **S. Ghosal**, et al., "A generative-predictive framework to capture altered brain activity in fMRI and its association with genetic risk: application to Schizophrenia", Proc. SPIE 10949, Medical Imaging 2019: Image Processing.

Sayan Ghosal, Nilanjan Ray, Deep deformable registration: Enhancing accuracy by fully convolutional neural net, Pattern Recognition Letters.

S. Ghosal, et al., "A novel non-rigid registration algorithm for zebrafish larval images," 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

Reviewer ACTIVITY

- NeuroImage
- MICCAI: Intl Conference on Medical Image Computing and Computer Assisted Intervention

Tutoring and Mentorship

- Undergraduate Mentor
- HopHacks2020 (Mentor)
- Signals, Systems and Learning (TA)

Honors AND AWARDS

- MICCAI Student Participation Award
- 2020 • Dept. of Electrical and Computer Engineering, JHU, PhD fellowship 2017-2018
- Mitacs Globalink Research Fellowship Award

2016

Relevant Skills

Programming Languages: MATLAB, Python, LATEX

Libraries: PyTorch, scikit-learn Genomic Tools: PLink, IMPUTE2