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Prior Works in Imaging-Genetics
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*H. Wang, et al., Bioinformatics (2012).
* Pearlson GD, Liu J, et al., Front Genet. 2015

Cascaded Regression:
→ One-to-one mapping from gene to disease
→ Single modality is used

Correlation Based Analysis:
→ Maximizing the correlation between two 

modalities 
→ Paired data is required
→ Does not incorporate patient 

heterogeneity.

Healthy
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GMIND: An End-to-End Multimodal Framework
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î
n

2

ĝn
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ĝn

ŷ
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GMIND: End-to-End Mutimodal Framework
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GMIND: End-to-End Mutimodal Framework

Autoencoder Loss

Cross Entropy Loss Sparsity Penalty on
Feature Importance Maps
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Time

N0-Back
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Time

Two task fMRI datasets:
→ N-back working memory task

→ SDMT episodic memory task

Brain Parcellation:
→ Brainnetome atlas parcellate the brain in 246 region.

→ The contrast map is  averaged across the ROIs.



Experimental Data

Genetic Data: SNP
→ Genotyping was done using 

Illumina Bead Chips (510K/ 610K/660K/2.5M)

→ We use the PGC result to select 1242 independent SNPs 
thresholded at P < 10-4



Experimental Data

Genetic Data: SNP
→ Genotyping was done using 

Illumina Bead Chips (510K/ 610K/660K/2.5M)

→ We use the PGC result to select 1242 independent SNPs 
thresholded at P < 10-4

Locations:
• Lieber Institute for Brain Development (LIBD)

• University of Bari, Italy (BARI)

Institution
Modalities

N-Back SDMT SNP

LIBD 160 110 210

BARI 97 --- 97



Baselines

1. Support Vector Machines:  We construct a linear SVM classifier after concatenating all 
the data modalities,  

2.   CCA + RF: We build a random forest classifier using the
latent projections of CCA



Baselines

Concatenate
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All modalities
Present?

Impute Missing
Modality

Training

Yes No

2.   CCA + RF: We build a random forest classifier using the
latent projections of CCA

1. Support Vector Machines:  We construct a linear SVM classifier after concatenating all 
the data modalities,  

Handling Missing Data



Ablation Study

2.  Encoder Only: We compare our model to an ANN architecture based on the encoder and the classifier of G-MIND. 

1.  Encoder + Dropout: We compare our model to another ANN architecture where we only used the encoder, the      
classifier, and the learnable dropout layer.



Quantitative Results

10 fold cross validation result on LIBD data 
which includes missing data modalities
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Patient vs Control classification result when 
trained on LIBD data but tested on BARI data 

without any fine tuning.

Generalization ?
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Genetic Biomarkers

1

Biological Processes FDR

Central nervous system development 0.005

! Nervous system development 0.001

! System development. 0.005

Generation of neurons 0.005

! Neurogenesis 0.004

Regulation of calcium ion

transport into cytosol
0.04

! Regulation of sequestering of calcium ion 0.008

The median importance map of all the SNP across 
and their overlap-ping genes across the 10 folds

The enriched biological processes 
obtained via GO enrichment analysis



Genetic Biomarkers

The gene expression pattern of the selected 
set of genes in different brain tissues.
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Contributions

• An End-to-End framework to integrate imaging and genetic data modalities

• It can identify imaging and genetic biomarkers via learnable dropout mask

• The latent space captures an overcomplete representation of the data which 
provides robustness against missing data

• The cross-site generalization shows its ability to identify a robust set of biomarkers


